2,766 research outputs found

    Universal conductance reduction in a quantum wire

    Full text link
    Even a single point defect in a quantum wire causes a conductance reduction. In this paper we prove (without any approximations) that for any point impurity this conductance reduction in all the sub-bands is exactly 2e^2/h. Moreover, it is shown that in the case of a surface defect, not only is the conductance minimum independent of the defect characteristics, but the transmission matrix also converges to universal (defect-independent) values. We also discuss particle confinement between two arbitrarily weak point defects.Comment: 4 pages, 4 figures (Revtex

    Conductance and polarization in quantum junctions

    Get PDF
    We revisit the expression for the conductance of a general nanostructure -- such as a quantum point contact -- as obtained from the linear response theory. We show that the conductance represents the strength of the Drude singularity in the conductivity σ(k,k′;iω→0)\sigma(k,k';i\omega \to 0). Using the equation of continuity for electric charge we obtain a formula for conductance in terms of polarization of the system. This identification can be used for direct calculation of the conductance for systems of interest even at the {\it ab-initio} level. In particular, we show that one can evaluate the conductance from calculations for a finite system without the need for special ``transport'' boundary conditions

    Spectrum of π\pi Electrons in Graphene as an Alternant Macromolecule and Its Specific Features in Quantum Conductance

    Full text link
    An exact description of π\pi electrons based on the tight-binding model of graphene as an alternant, plane macromolecule is presented. The model molecule can contain an arbitrary number of benzene rings and has armchair- and zigzag-shaped edges. This suggests an instructive alternative to the most commonly used approach, where the reference is made to the honeycomb lattice periodic in its A and B sublattices. Several advantages of the macromolecule model are demonstrated. The newly derived analytical relations detail our understanding of π\pi electron nature in achiral graphene ribbons and carbon tubes and classify these structures as quantum wires.Comment: 13 pages 8 figures, revised in line with referee's comment

    Distillation of local purity from quantum states

    Full text link
    Recently Horodecki et al. [Phys. Rev. Lett. 90, 100402 (2003)] introduced an important quantum information processing paradigm, in which two parties sharing many copies of the same bipartite quantum state distill local pure states, by means of local unitary operations assisted by a one-way (two-way) completely dephasing channel. Local pure states are a valuable resource from a thermodynamical point of view, since they allow thermal energy to be converted into work by local quantum heat engines. We give a simple information-theoretical characterization of the one-way distillable local purity, which turns out to be closely related to a previously known operational measure of classical correlations, the one-way distillable common randomness.Comment: 8 page

    Ballistic thermal conductance limited by phonon roughness scattering: A comparison of power-law and Gaussian roughness

    Get PDF
    In this work, we have investigated the influence of power-law roughness on the ballistic thermal conductance KTH for a nanosized beam adiabatically connected between two heat reservoirs. The sideways wall beam roughness is assumed to be power-law type, which is described by the roughness amplitude w, the in-plane roughness correlation length ξ and the roughness exponent 0≤H≤1. Distinct differences occur in between power-law and Gaussian wall roughness. For power-law roughness with low roughness exponents H (<0.5), the influence of phonon scattering can be rather destructive leading to significant deviations from the universal conductance value for flat beam walls. On the other hand for large roughness exponents (H>0.5) the conductance drop is significantly smaller than that of Gaussian roughness assuming similar roughness ratios w/ξ.

    Transport in Molecular Junctions with Different Metallic Contacts

    Full text link
    Ab initio calculations of phenyl dithiol connected to Au, Ag, Pd, and Pt electrodes are performed using non-equilibrium Green's functions and density functional theory. For each metal, the properties of the molecular junction are considered both in equilibrium and under bias. In particular, we consider in detail charge transfer, changes in the electrostatic potential, and their subsequent effects on the IV curves through the junctions. Gold is typically used in molecular junctions because it forms strong chemical bonds with sulfur. We find however that Pt and Pd make better electrical contacts than Au. The zero-bias conductance is found to be greatest for Pt, followed by Pd, Au, and then Ag

    The Smallest Molecular Switch

    Full text link
    Ab-initio total energy calculations reveal benzene-dithiolate (BDT) molecules on a gold surface, contacted by a monoatomic gold STM tip to have two classes of low energy conformations with differing symmetries. Lateral motion of the tip or excitation of the molecule cause it to change from one conformation class to the other and to switch between a strongly and a weakly conducting state. Thus, surprisingly, despite their apparent simplicity these Au/BDT/Au nanowires are shown to be electrically bi-stable switches, the smallest two-terminal molecular switches to date. Experiments with a conventional or novel self-assembled STM are proposed to test these predictions.Comment: 8 pages, 3 figure

    Distributions of Conductance and Shot Noise and Associated Phase Transitions

    Full text link
    For a chaotic cavity with two indentical leads each supporting N channels, we compute analytically, for large N, the full distribution of the conductance and the shot noise power and show that in both cases there is a central Gaussian region flanked on both sides by non-Gaussian tails. The distribution is weakly singular at the junction of Gaussian and non-Gaussian regimes, a direct consequence of two phase transitions in an associated Coulomb gas problem.Comment: 5 pages, 3 figures include

    Quantized Conductance of a Single Magnetic Atom

    Full text link
    A single Co atom adsorbed on Cu(111) or on ferromagnetic Co islands is contacted with non-magnetic W or ferromagnetic Ni tips in a scanning tunneling microscope. When the Co atom bridges two non-magnetic electrodes conductances of 2e^2/h are found. With two ferromagnetic electrodes a conductance of e^2/h is observed which may indicate fully spin-polarized transport.Comment: 3 pages, 2 figure

    DC Conductance of Molecular Wires

    Full text link
    Inspired by the work of Kamenev and Kohn, we present a general discussion of the two-terminal dc conductance of molecular devices within the framework of Time Dependent Current-Density Functional Theory. We derive a formally exact expression for the adiabatic conductance and we discuss the dynamical corrections. For junctions made of long molecular chains that can be either metallic or insulating, we derive the exact asymptotic behavior of the adiabatic conductance as a function of the chain's length. Our results follow from the analytic structure of the bands of a periodic molecular chain and a compact expression for the Green's functions. In the case of an insulating chain, not only do we obtain the exponentially decaying factors, but also the corresponding amplitudes, which depend very sensitively on the electronic properties of the contacts. We illustrate the theory by a numerical study of a simple insulating structure connected to two metallic jellium leads.Comment: 15 pgs and 9 figure
    • …
    corecore